Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(16): 167801, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723603

RESUMO

The origin of the coil-globule transition for water-soluble thermoresponsive polymers frequently used in nanomaterials remains elusive. Using polypropylene oxide as an example we demonstrate by means of atomistic molecular dynamics simulations that temperature-induced increase in the sequence length of monomers that are not hydrogen bonded to water drives the coil-globule transition. Longer chains statistically exhibit longer sequences which serve as nucleation sites for hydrophobic cluster formation, facilitating chain collapse at lower temperature in agreement with experimental data.

2.
Adv Funct Mater ; 31(10)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34366760

RESUMO

The authors designed a structurally stable nano-in-nano (NANO2) system highly capable of bioimaging via an aggregation-enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SC n H2n+1)18, n = 4-16] encapsulated in discoidal phospholipid bicelles through a one-pot synthesis. The detailed morphological characterization of NANO2 is conducted using cryogenic transmission electron microscopy, small/wide angle X-ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2 is 20-60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near-infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation-enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters' ligands. With the advantages of biocompatibility and high cellular uptake, NANO2 is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.

3.
Macromol Rapid Commun ; 42(12): e2100097, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864317

RESUMO

The effect of molecular architecture, star versus linear, poly(ethylene oxide) (PEO) on the formation of hydrogen-bonded complexes with linear poly(methacrylic acid) (PMAA) is investigated experimentally and rationalized theoretically. Isothermal titration calorimetry reveals that at pH 2.5 interpolymer complexes (IPCs) of PMMA with a 6-arm star PEO (sPEO) contains ≈50% more polyacid than IPCs formed with linear PEO (lPEO). While the enthalpy of IPC formation is positive in both cases, its magnitude is ≈50% larger for sPEO/PMAA complexes that exhibit a lower dissociation constant than lPEO/polyacid complexes. These results are rationalized based on a higher localized density of hydrogen bonds formed between sPEO and the polyacid which prevents penetration of star molecules into PMAA coils. Accordingly, Fourier transform infrared results indicate approximately twofold excess of self-associated >COOH units over intermolecularly bonded >COOH units in sPEO-containing complexes. The excess of PMAA chains in IPCs and the percentage of self-associated carboxylic groups in sPEO/PMAA complexes both increase with polyacid molecular weight. Other findings, including a positive entropy, hysteresis in composition at strongly acidic pH, and progressive equilibration of IPCs at increased pH are consistent with the critical role of charge and release of water molecules in the formation of sPEO/PMAA and lPEO/PMAA complexes.


Assuntos
Polietilenoglicóis , Polímeros , Hidrogênio , Ligação de Hidrogênio , Água
4.
J Chem Phys ; 150(18): 184908, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091932

RESUMO

Diblock polymer micelles dispersed in an aqueous environment are being actively investigated for various applications, but there is only a qualitative understanding of the effect of the chemical structure on the micelle hydration and water dynamics as these properties are difficult to assess experimentally. Using all-atom molecular dynamics simulations, we investigate aqueous solutions of three comparable in size diblock copolymer micelles with core-forming blocks of different hydrophobicity: polybutadiene (PB), polycaprolactone (PCL), and polytetrahydrofuran (pTHF) with the same hydrophilic block, polyethylene oxide (PEO). We found that core-block hydrophobicity and ability to form hydrogen bonds with water strongly affect the water dynamics near the core: water molecules spend considerably less time in contact with the PB block than with PCL and pTHF blocks. We obtained polymer and solvent volume fraction profiles and determined that the interfacial width systematically increases with a decrease of core block hydrophobicity with water penetration into the core being negligible for PB-PEO and PCL-PEO micelles, while for pTHF-PEO micelles the interface is more diffuse and there is a noticeable penetration of water (17% by volume). For PCL-PEO micelles, which are commonly used in biomedical applications, we also investigated tetrahydrofuran (THF) penetration into the micelles from mixed THF:water solution at early stages of micelle dissolution. We found an inhomogeneous solvent distribution with a maximum of THF volume fraction in the interfacial core-corona region and partial exclusion from the PEO corona, which slows down micelle dissolution. These results can have important implications for micelle stability and use in biomedical applications.

5.
Soft Matter ; 14(23): 4792-4804, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29808227

RESUMO

Incorporation of polymer chains into wormlike surfactant micelles, which find a large range of applications, offers the opportunity to modify their structure and properties. In this paper, using spectroscopic, scattering and rheological techniques and computer simulations, we study the incorporation of poly(4-vinylpyridine) of two different molecular weights (MWs) into entangled networks of wormlike surfactant micelles of potassium oleate. Using NMR-spectroscopy we show that, independent of its MW, the polymer incorporates into the core-corona interface of the surfactant micelles. According to SANS data, the polymer does not alter the micelle structure or the micelle radius, but diminishes the packing density of the surfactant. At the same time, rheology reveals a stark difference between the surfactant networks with embedded polymers of different MWs. Networks with the higher-MW polymer possess larger viscosity and a longer relaxation time, which we attribute to the larger length of the hybrid micelles. Moreover, we demonstrate that in an intermediate concentration range the higher-MW polymer is able to link neighbouring surfactant micelles together, which has never been previously observed. However, with a further increase in polymer content the micelles become smaller due to the high breaking susceptibility of the boundaries of polymer-containing sections, leading to the stabilization of micellar end-caps by the embedded macromolecules. This process is more prominent in the case of the shorter polymer. Our finding that an increased MW of macromolecules permits the formation of longer hybrid micelles and enhances their rheological properties is of obvious importance for the fundamental understanding of polymer-surfactant interactions and the development of new industrial formulations based on hybrid polymer-wormlike surfactant micelles.

6.
Phys Chem Chem Phys ; 19(15): 9823-9832, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28275762

RESUMO

Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

7.
ACS Nano ; 11(4): 3651-3661, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28291322

RESUMO

Gold nanoparticles (AuNPs) exhibit strong fluorescent and electromagnetic properties, which can be enhanced upon clustering and used in therapeutic, imaging, and sensing applications. A combination of gold nanoparticles with lipid nanodiscs can be attractive for AuNP self-assembly and useful in biomedical applications. Using molecular dynamics simulations we show that lipid nanodiscs can serve as templates for AuNP clustering into rings and string-like structures. We demonstrate that equilibrium encapsulation of 1 nm hydrophobically modified AuNPs into lipid nanodiscs composed of a mixture of dipalmitoylphosphatidylcholine (DPPC) and dihexanoylphosphatidylcholine (DHPC) lipids occurs at the rim and results in formation of a ring of gold. The interior of the nanodisc is inaccessible to AuNPs due to the DPPC liquid crystalline order. With temperature increase the lipid order diminishes, initiating the nanodisc transformation into a vesicle, upon which encapsulated AuNPs cluster into a close-packed string or nanoring, thereby stalling the vesiculation process at a "round vase" or cup-like stage depending on the AuNP concentration. In contrast, encapsulation of AuNPs by an equilibrium lipid vesicle results in its deformation with randomly clustered AuNPs, in agreement with experimental observations. We characterize the AuNP cluster size and surface-to-surface pair distribution, both of which impact the AuNP luminescent properties. We investigate the effect of alkane tether length on the nanodisc stability and AuNP clustering inside the nanodiscs and vesicles. Our results show that lipid nanodiscs can enhance gold cluster formation, which can be further exploited in imaging applications.

8.
Phys Rev Lett ; 117(2): 027801, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447525

RESUMO

Hydration strongly affects macromolecular conformation in solution and under nanoconfinement as encountered in nature and nanomaterials. Using atomistic molecular dynamics simulations we demonstrate that polyethylene oxide spontaneously enters single wall carbon nanotubes (CNTs) from aqueous solutions and forms rodlike, helix, and wrapped chain conformations depending on the CNT diameter. We show that water organization and the stability of the polyethylene oxide hydration shell under confinement is responsible for the helix formation, which can have significant implications for nanomaterial design.

9.
Langmuir ; 30(13): 3705-14, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24617576

RESUMO

In this article, we investigate the effect of hydrocarbon addition on the rheological properties and structure of wormlike micellar solutions of potassium oleate. We show that a viscoelastic solution of entangled micellar chains is extremely responsive to hydrocarbons-the addition of only 0.5 wt % n-dodecane results in a drastic drop in viscosity by up to 5 orders of magnitude, which is due to the complete disruption of micelles and the formation of microemulsion droplets. We study the whole range of the transition of wormlike micelles into microemulsion droplets and discover that it can be divided into three regions: (i) in the first region, the solutions retain a high viscosity (∼10-350 Pa·s), the micelles are entangled but their length is reduced by the solubilization of hydrocarbons; (ii) in the second region, the system transitions to the unentangled regime and the viscosity sharply decreases as a result of further micelle shortening and the appearance of microemulsion droplets; (iii) in the third region, the viscosity is low (∼0.001 Pa·s) and only microemulsion droplets remain in the solution. The experimental studies were accompanied by theoretical considerations, which allowed us to reveal for the first time that (i) one of the leading mechanisms of micelle shortening is the preferential accumulation of the solubilized hydrocarbon in the spherical end caps of wormlike micelles, which makes the end caps thermodynamically more favorable; (ii) the onset of the sharp drop in viscosity is correlated with the crossover from the entangled to unentangled regime of the wormlike micellar solution taking place upon the shortening of micellar chains; and (iii) in the unentangled regime short cylindrical micelles coexist with microemulsion droplets.

10.
Phys Rev Lett ; 109(23): 238102, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368269

RESUMO

Selectivity of interactions between nanoparticles functionalized by tethered ligands and cell surfaces with different densities of receptors plays an essential role in biorecognition and its implementation in nanobiomedicine. We show that the onset of nanoparticle adsorption has a universal character for a range of nanoparticles: the onset receptor density decreases exponentially with the energy of ligand-receptor binding and inversely with the ligand density. We demonstrate that a bimodal tether distribution, which permits shielding ligands by longer nonfunctional tethers, leads to extra loss of entropy at the adsorption onset, enhancing the selectivity.


Assuntos
Modelos Biológicos , Nanopartículas/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Simulação por Computador , Ligantes , Modelos Moleculares , Método de Monte Carlo , Termodinâmica
11.
J Chem Phys ; 133(18): 184904, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21073229

RESUMO

Using equilibrium and nonequilibrium molecular dynamics simulations, we studied the equilibrium and rheological properties of dilute and semidilute solutions of head-to-tail associating polymers. In our simulation model, a spontaneous complementary reversible association between the donor and the acceptor groups at the ends of oligomers was achieved by introducing a combination of truncated pseudo-Coulombic attractive potential and Lennard Jones repulsive potential between donor, acceptor, and neighboring groups. We have calculated the equilibrium properties of supramolecular polymers, such as the ring/chain equilibrium, average molecular weight, and molecular weight distribution of self-assembled chains and rings, which all agree well with previous analytical and computer modeling results. We have investigated shear thinning of solutions of 8- and 20-bead associating oligomers with different association energies at different temperatures and oligomer volume fractions. All reduced viscosity data for a given oligomer length can be collapsed into one master curve, exhibiting two power-law regions of shear-thinning behavior with an exponent of -0.55 at intermediate ranges of the reduced shear rate ß and -0.8 (or -0.9) at larger shear rates. The equilibrium viscosity of supramolecular solutions with different oligomer lengths and associating energies is found to obey a power-law scaling dependence on oligomer volume fraction with an exponent of 1.5, in agreement with the experimental observations for several dilute or semidilute solutions of supramolecular polymers. This implies that dilute and semidilute supramolecular polymer solutions exhibit high polydispersity but may not be sufficiently entangled to follow the reptation mechanism of relaxation.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Substâncias Macromoleculares/química , Peso Molecular , Reologia , Viscosidade
12.
Biomacromolecules ; 11(7): 1785-95, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20536119

RESUMO

Using computer simulations, we systematically studied the influence of different design parameters of a spherical nanoparticle tethered with monovalent ligands on its efficiency of targeting planar cell surfaces containing mobile receptors. We investigate how the nanoparticle affinity can be affected by changing the binding energy, the percent of functionalization by ligands, tether length, grafting density, and nanoparticle core size. In general, using a longer tether length or increasing the number of tethered chains without increasing the number of ligands increases the conformational penalty for tether stretching/compression near the cell surface and leads to a decrease in targeting efficiency. At the same time, using longer tethers or a larger core size allows ligands to interact with receptors over a larger cell surface area, which can enhance the nanoparticle affinity toward the cell surface. We also discuss the selectivity of nanoparticle targeting of cells with a high receptor density. Based on the obtained results, we provide recommendations for improving the nanoparticle binding affinity and selectivity, which can guide future nanoparticle development for diagnostic and therapeutic purposes.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Método de Monte Carlo , Nanopartículas/química , Ligantes , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
13.
Macromol Rapid Commun ; 31(9-10): 897-903, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21590985

RESUMO

Using Monte Carlo simulations we show that the equilibrium properties of metallo-supramolecular micelles are determined by the competition of 2:1 and 1:1 metal-ligand complexation in the bulk and on the surface as well as steric interactions between the neighboring corona blocks attached to the surface. We predict that by increasing the association energy for the second metal-ligand bond, or decreasing the corona block length one can achieve a larger core surface coverage for metallo-supramolecular micelles. Compared to covalently bonded block copolymer micelles, we show that metallo-supramolecular micelles have smaller monomer and end group density, especially in the vicinity of the core, which may lead to experimentally observed aggregation.

14.
Biomacromolecules ; 10(11): 3089-97, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19894765

RESUMO

Dissipative particle dynamics simulations are applied to study nanoparticle targeting to a cell surface containing a high concentration of receptors. We found that the normalized number of bound ligands follows an exponential growth function 1 - exp(-t/tau), with the lifetime tau increasing as a function of the binding strength. With increasing binding energy, the shape of the adsorbed nanoparticle becomes ellipsoidal due to a large number of stably bound ligands, most of which are positioned on the nanoparticle periphery. For a low degree of functionalization of homogeneously distributed ligands, the kinetics of nanoparticle attachment slows down due to interference by nonfunctional chains, the overall number of bound ligands at equilibrium decreases, although the stability of ligand attachment increases. Janus-like nanoparticles with functionalized chains positioned on one side of the nanoparticle exhibit more rapid binding to the cell surface with a large equilibrium number of stably bound ligands.


Assuntos
Nanopartículas/química , Simulação por Computador , Cinética , Ligantes , Tamanho da Partícula , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/fisiologia , Transporte Proteico/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Propriedades de Superfície , Fatores de Tempo
15.
J Chem Phys ; 131(6): 061102, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19691371

RESUMO

Using computer simulations we study linear oligomers end functionalized with ligands that can form trans- or cis-2:1 complexes with metal ions in a salt-screened good solvent. We show that trans-cis isomerization of ligand-metal complexes can significantly increase the average molecular weight as well as trigger formation of reversible metallosupramolecular network based on 3:1 ligand-metal complexes acting as cross-linkers. We predict the conditions under which the most dramatic changes in the properties of metallosupramolecular polymers, such as network formation or increase in elastic plateau modulus of the network, occur upon isomerization.

16.
Langmuir ; 24(22): 13037-47, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18834163

RESUMO

The reversible binding between a planar polymer layer functionalized by ligands and a planar cell surface containing different densities of mobile receptors has been studied by Monte Carlo simulations. Using the acceptance-ratio method, the distance-dependent profiles for the average number of ligands bound to receptors, the total free energy for the polymer layer-cell surface interaction and the interaction force were obtained. Four main design parameters for the polymer layer were considered: the degree of functionalization, chain degree of polymerization, polymer grafting density and the binding energy for the ligand-receptor interaction. We found that an increase in the degree of functionalization or in the absolute energy of ligand-receptor binding results in a larger number of ligands bound to the receptors, lower free energy, and stronger attractive force. Polymer layers composed of shorter chains were found to exhibit a deeper and narrower free energy profile and a larger attractive force, while longer tethers can interact with the cell surface at a larger and broader range of separation distances, in agreement with experimental observations. Our simulation results show that the increase in polymer grafting density from the mushroom to brush regime enhances the ligand availability and results in a stronger attractive force, increases the maximum binding distance, but exhibits a shallower free energy minimum due to the smaller tolerance to compression for polymer layers with high grafting density. We used two measures of the polymer layer binding affinity to the cell surface: the free energy minimum, related to the equilibrium binding constant and the fraction of bound ligands. We found that the polymer layers with a smaller chain length and grafting density, larger degree of functionalization, and larger absolute binding energy exhibit both a larger equilibrium binding constant to the cell surface and a larger average number of bound ligands, except for high binding energies when the maximum level of binding is reached independently of polymer length and grafting density. We showed that high binding specificity can be achieved by the polymer layers with intermediate ligand-receptor binding energies or an intermediate number of ligands, as a larger binding energy or number of ligands ensures a high binding affinity but lacks specificity while a smaller binding energy or number of ligands provides inadequate affinity. We found that the results for polymer layers with different properties follow a similar pattern when both high binding affinity to cells with high receptor density and high binding specificity are considered. As a result, the optimal design of the polymer layers can be achieved by using several different strategies, which are discussed.


Assuntos
Membrana Celular/metabolismo , Polímeros/química , Adsorção , Físico-Química/métodos , Simulação por Computador , Desenho de Equipamento , Ligantes , Membranas Artificiais , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Polietilenoglicóis/química , Ligação Proteica , Propriedades de Superfície , Termodinâmica
17.
Exp Biol Med (Maywood) ; 232(8): 1090-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17720955

RESUMO

Polymer micelles with two different core-forming blocks, poly(d,l -lactide) (PLA) and poly(epsilon-caprolactone) (PCL), but the same coronal material, poly(ethylene glycol) (PEG), were investigated in this study as nanoscopic drug carriers. The release of two different drugs, doxorubicin (DOX) and beta-lapachone (beta-lap), from PEG(5k)-b-PCL(5k) and PEG(5k)-b-PLA(5k) micelles was studied at pH 5.0 and 7.4. Mathematical solutions of both Higuchi's model and Fickian diffusion equations were utilized to elucidate the differences between the micelle core materials for the two drugs. The neutral and smaller of the two drugs tested, beta-lap, demonstrated faster, pH-independent release, suggesting that no substantial changes occurred in either micelle core at lower pH. In contrast, the release rate of DOX was found to noticeably increase at lower pH with a larger cumulative amount of drug released. Different core materials were shown to have considerable influence on the release kinetics of both drugs: in both cases, the more hydrophobic PCL core showed slower drug release rates compared with the less hydrophobic PLA core.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Micelas , Modelos Químicos , Naftoquinonas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética
18.
Langmuir ; 21(12): 5605-15, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15924497

RESUMO

Using Monte Carlo simulations we study the influence of ligand architecture (valence, branching length) and structure (polydispersity) of a flat protective polymer layer on the accessibility of its functional groups and efficiency of receptor targeting. Two types of receptor surfaces were considered: the surface homogeneously covered with receptors and the surface containing a finite number of receptor sites. We found that multivalent ligands provide a larger density of targeting groups on the periphery of the layer compared to monovalent ligands for the same overall number of targeting groups per polymer layer. Because of their cooperativity in binding, multivalent ligands were also considerably more efficient in binding to both types of receptor surfaces. With an increase of ligand valence the number of functional groups attached to receptors noticeably increases. Short-branched divalent ligands show an especially high cooperativity in binding to closely packed receptors. However, in the case of immobile receptors separated by a finite distance from each other, the average distance between the functional groups belonging to the same short divalent ligand is too small to reach different receptors simultaneously and the receptor binding is less efficient than in the monovalent ligand case. Using a bidisperse protective polymer layer formed by short nonfunctional polymers and long functionalized polymers considerably increases the fraction of functional groups on the periphery of the layer. Simulations of receptor binding confirm the high efficiency of receptor targeting by bidisperse polymer layers, which is achieved by means of larger compressibility and higher capability of the ligands to reach out compared to the corresponding monodisperse layers. The concepts of multivalent ligands and a bidisperse protective polymer layer each have their own advantages which can be combined for an enhanced targeting effect.

19.
J Am Chem Soc ; 126(45): 14972-8, 2004 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-15535726

RESUMO

Equilibrium metal-ligand complexation leading to formation of linear or ringlike supramolecular polymers is studied by means of Monte Carlo (MC) simulations and theoretical analysis. We found that in most of the cases high-molecular-weight polymers are formed over a rather narrow composition range (near the 2:1 ligand-metal ratio). Besides the imbalance in the number of metals and ligands, the molecular weight decrease in the metal-rich area is caused by an increase in 1:1 ligand-metal complex formation. The results of simulations and theoretical modeling show that the fraction of 1:1 complexes considerably decreases for metal-ligand pairs with a high cooperativity of complexation. On the basis of our analytical model, we suggest a simple criterion for choosing the metal/ligand pair to achieve high molecular weight complexes in a broad range of metal-rich compositions. Dilution of a solution of metallosupramolecular polymers is found to decrease the average molecular weight and to enhance ring formation, which otherwise is very limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...